Source code for custom_algorithms.sigma

"""
sigma.py
"""
# REQUIRED Skyline imports.  All custom algorithms MUST have the following two
# imports.  These are required for exception handling and to record algorithm
# errors regardless of debug_logging setting for the custom_algorithm
import logging
import traceback
from custom_algorithms import record_algorithm_error

# Import ALL modules that the custom algorithm requires.  Remember that if a
# requirement is not one that is provided by the Skyline requirements.txt you
# must ensure it is installed in the Skyline virtualenv
from custom_algorithm_sources.sigma.sigma import run_sigma_algorithms

# The name of the function MUST be the same as the name declared in
# settings.CUSTOM_ALGORITHMS.
# It MUST have 3 parameters:
# current_skyline_app, timeseries, algorithm_parameters
# See https://earthgecko-skyline.readthedocs.io/en/latest/algorithms/custom-algorithms.html
# for a full explanation about each.
# ALWAYS WRAP YOUR ALGORITHM IN try and except


# @added 20221127 - Feature #4736: custom_algorithms - sigma
#                   Feature #4734: mirage_vortex
[docs]def sigma(current_skyline_app, parent_pid, timeseries, algorithm_parameters): """ This is an implementation of the original Skyline 3sigma algorithms as a single custom algorithm. It has been extended to allow for the sigma value to be passed as a parameter. :param current_skyline_app: the Skyline app executing the algorithm. This will be passed to the algorithm by Skyline. This is **required** for error handling and logging. You do not have to worry about handling the argument in the scope of the custom algorithm itself, but the algorithm must accept it as the first agrument. :param parent_pid: the parent pid which is executing the algorithm, this is **required** for error handling and logging. You do not have to worry about handling this argument in the scope of algorithm, but the algorithm must accept it as the second argument. :param timeseries: the time series as a list e.g. ``[[1667608854, 1269121024.0], [1667609454, 1269174272.0], [1667610054, 1269174272.0]]`` :param algorithm_parameters: a dictionary of any required parameters for the custom_algorithm and algorithm itself. For the anomalous_daily_peak custom algorithm no specific algorithm_parameters are required apart from an empty dict, example: ``algorithm_parameters={}`` :type current_skyline_app: str :type parent_pid: int :type timeseries: list :type algorithm_parameters: dict :return: anomalous, anomalyScore :rtype: tuple(boolean, float) """ # You MUST define the algorithm_name algorithm_name = 'sigma' # Define the default state of None and None, anomalous does not default to # False as that is not correct, False is only correct if the algorithm # determines the data point is not anomalous. The same is true for the # anomalyScore. anomalous = None anomalyScore = None anomalies = {} current_logger = None # If you wanted to log, you can but this should only be done during # testing and development def get_log(current_skyline_app): current_skyline_app_logger = current_skyline_app + 'Log' current_logger = logging.getLogger(current_skyline_app_logger) return current_logger # Use the algorithm_parameters to determine the sample_period debug_logging = None try: debug_logging = algorithm_parameters['debug_logging'] except: debug_logging = False if debug_logging: try: current_logger = get_log(current_skyline_app) current_logger.debug('debug :: %s :: debug_logging enabled with algorithm_parameters - %s' % ( algorithm_name, str(algorithm_parameters))) except: # This except pattern MUST be used in ALL custom algortihms to # facilitate the traceback from any errors. The algorithm we want to # run super fast and without spamming the log with lots of errors. # But we do not want the function returning and not reporting # anything to the log, so the pythonic except is used to "sample" any # algorithm errors to a tmp file and report once per run rather than # spewing tons of errors into the log e.g. analyzer.log record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (anomalous, anomalyScore, anomalies) # Use the algorithm_parameters to determine variables debug_print = None try: debug_print = algorithm_parameters['debug_print'] except: debug_print = False sigma_value = 3 try: sigma_value = int(algorithm_parameters['sigma']) except: sigma_value = 3 consensus = 6 try: consensus = algorithm_parameters['consensus'] except: consensus = 6 anomaly_window = 1 try: anomaly_window = int(algorithm_parameters['anomaly_window']) except: anomaly_window = 1 return_anomalies = False try: return_anomalies = algorithm_parameters['return_anomalies'] except: return_anomalies = False try: anomalous, anomalies = run_sigma_algorithms(current_skyline_app, timeseries, sigma_value, consensus, anomaly_window) if anomalous: anomalyScore = 1.0 else: anomalyScore = 0.0 except StopIteration: # This except pattern MUST be used in ALL custom algortihms to # facilitate the traceback from any errors. The algorithm we want to # run super fast and without spamming the log with lots of errors. # But we do not want the function returning and not reporting # anything to the log, so the pythonic except is used to "sample" any # algorithm errors to a tmp file and report once per run rather than # spewing tons of errors into the log e.g. analyzer.log if not return_anomalies: return (anomalous, anomalyScore) return (anomalous, anomalyScore, anomalies) except: record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (anomalous, anomalyScore, anomalies) return (anomalous, anomalyScore, anomalies)