Source code for custom_algorithms.irregular_unstable

"""
irregular_unstable.py
"""
# REQUIRED Skyline imports.  All custom algorithms MUST have the following two
# imports.  These are required for exception handling and to record algorithm
# errors regardless of debug_logging setting for the custom_algorithm
import logging
from time import time
import traceback
from custom_algorithms import record_algorithm_error

# Import ALL modules that the custom algorithm requires.  Remember that if a
# requirement is not one that is provided by the Skyline requirements.txt you
# must ensure it is installed in the Skyline virtualenv
import numpy as np

from custom_algorithm_sources.sigma.sigma import run_sigma_algorithms
from custom_algorithm_sources import stumpy
from custom_algorithm_sources.spectral_residual.spectral_residual import SpectralResidual
from skyline_functions import get_graphite_metric
from functions.victoriametrics.get_victoriametrics_metric import get_victoriametrics_metric
from functions.timeseries.downsample import downsample_timeseries

# The name of the function MUST be the same as the name declared in
# settings.CUSTOM_ALGORITHMS.
# It MUST have 3 parameters:
# current_skyline_app, timeseries, algorithm_parameters
# See https://earthgecko-skyline.readthedocs.io/en/latest/algorithms/custom-algorithms.html
# for a full explanation about each.
# ALWAYS WRAP YOUR ALGORITHM IN try and except


# @added 20230414 - Feature #4848: mirage - analyse.irregular.unstable.timeseries.at.30days
[docs]def irregular_unstable(current_skyline_app, parent_pid, timeseries, algorithm_parameters): """ A timeseries is NOT anomalous if it has low variance over 30 days and does not trigger multiple algorithms. Only timeseries that are thought to be anomalous AND have a low variance at 7 days should be run through this algorithm. It is meant to be run with Mirage after all algorithms, inlcuding custom algorithms have been run and found a metric to be ANOMALOUS. This algorithm does a final check to see if the metric has low variance and if so analyses the data at 30 days. On irregular, unstable metrics that exhibit low variance at 7 days and 30 days, the algorithm generally results in ~63% of anomalies on these timeseries at 7 days, being correctly identified as false positives when the data is analysed at 30 days. The irregular_unstable algorithm takes on average 3.861 seconds to run, however if the timeseries is discarded because at 30 days it does not have low variance, the average discard time is 0.213 seconds. :param current_skyline_app: the Skyline app executing the algorithm. This will be passed to the algorithm by Skyline. This is **required** for error handling and logging. You do not have to worry about handling the argument in the scope of the custom algorithm itself, but the algorithm must accept it as the first agrument. :param parent_pid: the parent pid which is executing the algorithm, this is **required** for error handling and logging. You do not have to worry about handling this argument in the scope of algorithm, but the algorithm must accept it as the second argument. :param timeseries: the time series as a list e.g. ``[[1667608854, 1269121024.0], [1667609454, 1269174272.0], [1667610054, 1269174272.0]]`` :param algorithm_parameters: a dictionary of any required parameters for the custom_algorithm and algorithm itself. For the irregular_unstable custom algorithm no specific algorithm_parameters are required apart from an empty dict, example: ``algorithm_parameters={}``. But the number_of_daily_peaks can be passed define how many peaks must exist in the window period to be classed as normal. If this is set to 3 and say that we are checking a possible anomaly at 00:05, there need to be 3 peaks that occur over the past 7 days in the dialy 23:35 to 00:05 window if there are not at least 3 then this is considered as anomalous. ``algorithm_parameters={'number_of_daily_peaks': 3}`` :type current_skyline_app: str :type parent_pid: int :type timeseries: list :type algorithm_parameters: dict :return: anomalous, anomalyScore :rtype: tuple(boolean, float) """ # You MUST define the algorithm_name algorithm_name = 'irregular_unstable' start = time() # Define the default state of None and None, anomalous does not default to # False as that is not correct, False is only correct if the algorithm # determines the data point is not anomalous. The same is true for the # anomalyScore. anomalous = None anomalyScore = None current_logger = None # If you wanted to log, you can but this should only be done during # testing and development def get_log(current_skyline_app): current_skyline_app_logger = current_skyline_app + 'Log' current_logger = logging.getLogger(current_skyline_app_logger) return current_logger def normalised_variance(values): normalised_var = np.nan try: np_values = np.array(values) np_max = np.amax(np_values) np_min = np.amin(np_values) norm_np_values = (np_values - np_min) / (np_max - np_min) normalised_var = round(np.var(norm_np_values), 4) except: normalised_var = np.nan return normalised_var # Use the algorithm_parameters to determine the sample_period debug_logging = None try: debug_logging = algorithm_parameters['debug_logging'] except: debug_logging = False if debug_logging: try: current_logger = get_log(current_skyline_app) current_logger.debug('debug :: %s :: debug_logging enabled with algorithm_parameters - %s' % ( algorithm_name, str(algorithm_parameters))) except: # This except pattern MUST be used in ALL custom algortihms to # facilitate the traceback from any errors. The algorithm we want to # run super fast and without spamming the log with lots of errors. # But we do not want the function returning and not reporting # anything to the log, so the pythonic except is used to "sample" any # algorithm errors to a tmp file and report once per run rather than # spewing tons of errors into the log e.g. analyzer.log record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) print_debug = False try: print_debug = algorithm_parameters['print_debug'] except: print_debug = False base_name = None try: base_name = algorithm_parameters['metric'] if print_debug: print("algorithm_parameters['metric']:", base_name) except: record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) # @added 20230419 - Feature #4892: SNAB - labelled_metrics labelled_metric_name = None try: labelled_metric_name = algorithm_parameters['labelled_metric_name'] if print_debug: print("algorithm_parameters['labelled_metric_name']:", labelled_metric_name) except: labelled_metric_name = None low_variance = 0.009 try: low_variance = algorithm_parameters['low_variance'] if print_debug: print("algorithm_parameters['low_variance']:", low_variance) except: low_variance = 0.009 # General anomaly_window = 1 try: anomaly_window = int(algorithm_parameters['anomaly_window']) except: anomaly_window = 1 # spectral_residual threshold = None try: threshold = float(algorithm_parameters['threshold']) except: threshold = None threshold_perc = 99 try: threshold_perc = float(algorithm_parameters['threshold_perc']) except: threshold_perc = 99 # matrixprofile windows = 5 k_discords = 20 # sigma sigma_value = 3 try: sigma_value = int(algorithm_parameters['sigma']) except: sigma_value = 3 sigma_consensus = 6 try: sigma_consensus = algorithm_parameters['consensus'] except: sigma_consensus = 6 # @added 20230429 - Feature #4848: mirage - analyse.irregular.unstable.timeseries.at.30days # Use downsampled_timeseries data downsampled = False try: downsampled = algorithm_parameters['downsample_data'] except: downsampled = False downsampled_timeseries = [] if downsampled: downsampled_timeseries = list(timeseries) if print_debug: print('irregular_unstable checking %s with %s datapoints' % (base_name, str(len(timeseries)))) if debug_logging: current_logger.debug('debug :: irregular_unstable :: checking %s with %s datapoints' % (base_name, str(len(timeseries)))) try: # Check the normalised variance at 7 days normalised_var = np.nan try: timestamps = [int(item[0]) for item in timeseries] values = [item[1] for item in timeseries] np_timestamps = np.array(timestamps) ts_diffs = np.diff(np_timestamps) resolution_counts = np.unique(ts_diffs, return_counts=True) resolution = resolution_counts[0][np.argmax(resolution_counts[1])] if resolution > 900: # Not suited to low resolution data return (True, 1.0) duration = timestamps[-1] - timestamps[0] if duration < 446400: # Not suitable for less than 5.25 days worth of data return (True, 1.0) normalised_var = normalised_variance(values) except: if print_debug: print('error :: normalised_variance') print(traceback.format_exc()) record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) if debug_logging: current_logger.debug('debug :: irregular_unstable :: normalised_var: %s' % str(normalised_var)) if print_debug: print('irregular_unstable normalised_var: %s' % (str(normalised_var))) if not normalised_var: return (None, None) if normalised_var > low_variance: return (True, 1.0) timeseries = [] until_timestamp = timestamps[-1] from_timestamp = until_timestamp - (86400 * 30) try: if not labelled_metric_name: timeseries = get_graphite_metric(current_skyline_app, base_name, from_timestamp, until_timestamp, 'list', 'object') else: timeseries = get_victoriametrics_metric(current_skyline_app, base_name, from_timestamp, until_timestamp, 'list', 'object') except: if print_debug: print('error :: no timeseries fetched') print(traceback.format_exc()) record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) if not timeseries: return (None, None) if print_debug: print('irregular_unstable long timeseries length: %s' % (str(len(timeseries)))) # @added 20230429 - Feature #4848: mirage - analyse.irregular.unstable.timeseries.at.30days # Use downsampled_timeseries data (the FULL_DURATION and Graphite data) and align and merge # with the 30 day data using the downsampled_timeseries data values if downsampled: aligned_timeseries = [] for ts, value in timeseries: aligned_timeseries.append([int(int(ts) // resolution * resolution), value]) aligned_downsampled_timeseries = [] aligned_downsampled_timestamps = [] for ts, value in downsampled_timeseries: aligned_ts = int(int(ts) // resolution * resolution) aligned_downsampled_timeseries.append([aligned_ts, value]) aligned_downsampled_timestamps.append(aligned_ts) reduced_aligned_timeseries = [item for item in aligned_timeseries if item[0] not in aligned_downsampled_timestamps] if reduced_aligned_timeseries: timeseries = reduced_aligned_timeseries + downsampled_timeseries if print_debug: print('irregular_unstable long timeseries aligned and merged with downsampled timeseries') if debug_logging: current_logger.debug('debug :: irregular_unstable :: long timeseries aligned and merged with downsampled timeseries') normalised_var = np.nan try: normalised_var = normalised_variance([item[1] for item in timeseries]) except: record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) if print_debug: print('irregular_unstable long timeseries normalised_var: %s' % (str(normalised_var))) if debug_logging: current_logger.debug('debug :: irregular_unstable :: long timeseries normalised_var: %s' % str(normalised_var)) # @modified 20230505 - Feature #4848: mirage - analyse.irregular.unstable.timeseries.at.30days # After analysing and assessing the variance values for 251 tN SNAB results and # 7 fN results and 1 unsure result, it was determined that at 30 days the # normalised_var should be < 0.0065. Of the 251 tN result only 7 of those were # >= 0.0065 (0.0065, 0.0065, 0.0066, 0.0066, 0.0081, 0.0096, 0.0104). These # were reassessed and found that they could be deemed either way. Further the # unsure metric was 0.0065, therefore for the sake of perhaps 2.5% fPs we ensure # less fNs or unsures (with current knowledge) # if normalised_var > low_variance: if normalised_var >= 0.0065: return (True, 1.0) X = np.array([v for t, v in timeseries]) t = np.array([t for t, v in timeseries]) consensus = [] # Check spectral_residual at 30 days (or greater than 7 day) anomalous = False try: if print_debug: print('running SpectralResidual on X with %s datapoints' % str(len(X))) if debug_logging: current_logger.debug('debug :: running SpectralResidual on X with %s datapoints' % str(len(X))) start_sr = time() od = SpectralResidual( threshold=threshold, # threshold for outlier score window_amp=20, # window for the average log amplitude window_local=20, # window for the average saliency map n_est_points=20, # nb of estimated points padded to the end of the sequence padding_amp_method='reflect', # padding method to be used prior to each convolution over log amplitude. padding_local_method='reflect', # padding method to be used prior to each convolution over saliency map. padding_amp_side='bilateral' # whether to pad the amplitudes on both sides or only on one side. ) if not threshold: od.infer_threshold(X, t, threshold_perc=threshold_perc) od_preds = od.predict(X, t, return_instance_score=True, threshold_perc=threshold_perc) if print_debug: try: print('infer_threshold returned: %s' % str(od_preds['data']['threshold'])) except: print('infer_threshold no determined') # @modified 20230516 # If the anomaly_window is 1, give spectral_residual more because # it often triggers on the far leading side rather than the trailing # side or the peak if anomaly_window == 1: use_anomaly_window = anomaly_window + 2 anomaly_sum = sum(od_preds['data']['is_outlier'][-use_anomaly_window:]) else: anomaly_sum = sum(od_preds['data']['is_outlier'][-anomaly_window:]) if anomaly_sum > 0: consensus.append('spectral_residual') anomalous = True if print_debug: print('spectral_residual - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_sr))) except: if print_debug: print('error :: spectral_residual') print(traceback.format_exc()) record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) if debug_logging: current_logger.debug('debug :: irregular_unstable :: spectral_residual - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_sr))) # Check matrixprofile at 30 days (or greater than 7 day) profile = None discords = [] anomalous = False start_mp = time() try: profile = stumpy.stump(X, m=windows) if isinstance(profile, np.ndarray): profile = np.argsort(profile[:, 0])[-k_discords:] for discord in np.sort(profile): discords.append(discord) if discords: anomaly_timestamp = int(timeseries[-1][0]) anomaly_index = 0 for index, item in enumerate(timeseries): if int(item[0]) == int(anomaly_timestamp): anomaly_index = index break anonamlous_period_indices = [] for index, item in enumerate(timeseries): if index in range((anomaly_index - windows), anomaly_index): anonamlous_period_indices.append(index) discord_anomalies = [] for discord in discords: if discord in anonamlous_period_indices: anomalous = True for index in anonamlous_period_indices: if discord == index: discord_anomalies.append(index) if anomalous: consensus.append('matrixprofile') if print_debug: print('matrixprofile - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_mp))) except: if print_debug: print('error :: matrixprofile') print(traceback.format_exc()) record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) if debug_logging: current_logger.debug('debug :: irregular_unstable :: matrixprofile - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_sr))) if len(consensus) == 2: if print_debug: print('irregular_unstable consensus: %s, took %s seconds' % (str(consensus), (time() - start))) return (True, 1.0) anomalous = False start_s = time() try: anomalous, anomalies = run_sigma_algorithms(current_skyline_app, timeseries, sigma_value, sigma_consensus, anomaly_window) if anomalous: consensus.append('sigma') except: if print_debug: print('error :: sigma') print(traceback.format_exc()) record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) if debug_logging: current_logger.debug('debug :: irregular_unstable :: sigma - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_sr))) if print_debug: print('sigma - anomalous: %s, took %s seconds' % (str(anomalous), (time() - start_s))) if print_debug: print('irregular_unstable consensus: %s, took %s seconds' % (str(consensus), (time() - start))) if len(consensus) >= 2: anomalous = True anomalyScore = 1.0 if debug_logging: current_logger.debug('debug :: irregular_unstable :: anomalous: %s, consensus: %s, took %s seconds' % ( str(anomalous), str(consensus), (time() - start))) return (True, 1.0) else: anomalous = False anomalyScore = 0.0 if debug_logging: current_logger.debug('debug :: irregular_unstable :: anomalous: %s, consensus: %s, took %s seconds' % ( str(anomalous), str(consensus), (time() - start))) return (False, 0.0) except StopIteration: # This except pattern MUST be used in ALL custom algortihms to # facilitate the traceback from any errors. The algorithm we want to # run super fast and without spamming the log with lots of errors. # But we do not want the function returning and not reporting # anything to the log, so the pythonic except is used to "sample" any # algorithm errors to a tmp file and report once per run rather than # spewing tons of errors into the log e.g. analyzer.log return (None, None) except: record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (None, None) return (anomalous, anomalyScore)