Source code for analyzer_dev.algorithms_dev

from __future__ import division
import pandas
import numpy as np
import scipy
import statsmodels.api as sm
import traceback
import logging
from time import time
import os.path
import sys
from timeit import default_timer as timer
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
sys.path.insert(0, os.path.dirname(__file__))

try:
    from settings import (
        ALGORITHMS,
        CONSENSUS,
        FULL_DURATION,
        MAX_TOLERABLE_BOREDOM,
        MIN_TOLERABLE_LENGTH,
        STALE_PERIOD,
        REDIS_SOCKET_PATH,
        ENABLE_SECOND_ORDER,
        BOREDOM_SET_SIZE,
        PANDAS_VERSION,
        RUN_OPTIMIZED_WORKFLOW,
        SKYLINE_TMP_DIR,
        ENABLE_ALGORITHM_RUN_METRICS,
        ENABLE_ALL_ALGORITHMS_RUN_METRICS,
        REDIS_PASSWORD,
    )
except:
    print('failed to import expected settings' + traceback.format_exc())
    print(traceback.format_exc())

from algorithm_exceptions import *

skyline_app = 'analyzer_dev'
skyline_app_logger = skyline_app + 'Log'
logger = logging.getLogger(skyline_app_logger)

if ENABLE_SECOND_ORDER:
    from redis import StrictRedis
    from msgpack import unpackb, packb
    # @modified 20180519 - Feature #2378: Add redis auth to Skyline and rebrow
    if REDIS_PASSWORD:
        redis_conn = StrictRedis(password=REDIS_PASSWORD, unix_socket_path=REDIS_SOCKET_PATH)
    else:
        redis_conn = StrictRedis(unix_socket_path=REDIS_SOCKET_PATH)

try:
    send_algorithm_run_metrics = ENABLE_ALGORITHM_RUN_METRICS
except:
    send_algorithm_run_metrics = False


[docs]def get_function_name(): return traceback.extract_stack(None, 2)[0][2]
""" This is no man's land. Do anything you want in here, as long as you return a boolean that determines whether the input timeseries is anomalous or not. To add an algorithm, define it here, and add its name to settings.ALGORITHMS. """
[docs]def tail_avg(timeseries): """ This is a utility function used to calculate the average of the last three datapoints in the series as a measure, instead of just the last datapoint. It reduces noise, but it also reduces sensitivity and increases the delay to detection. """ try: t = (timeseries[-1][1] + timeseries[-2][1] + timeseries[-3][1]) / 3 return t except IndexError: return timeseries[-1][1]
[docs]def median_absolute_deviation(timeseries): """ A timeseries is anomalous if the deviation of its latest datapoint with respect to the median is X times larger than the median of deviations. """ # logger.info('Running ' + str(get_function_name())) try: series = pandas.Series([x[1] for x in timeseries]) median = series.median() demedianed = np.abs(series - median) median_deviation = demedianed.median() except: return None # The test statistic is infinite when the median is zero, # so it becomes super sensitive. We play it safe and skip when this happens. if median_deviation == 0: return False if PANDAS_VERSION < '0.17.0': try: test_statistic = demedianed.iget(-1) / median_deviation except: return None else: try: test_statistic = demedianed.iat[-1] / median_deviation except: return None # Completely arbitary...triggers if the median deviation is # 6 times bigger than the median if test_statistic > 6: return True # As per https://github.com/etsy/skyline/pull/104 by @rugger74 # Although never seen this should return False if not > arbitary_value # 20160523 @earthgecko return False
[docs]def grubbs(timeseries): """ A timeseries is anomalous if the Z score is greater than the Grubb's score. """ # logger.info('Running ' + str(get_function_name())) try: # @modified 20210420 - Support #4026: Change from scipy array to numpy array # Deprecation of scipy.array # series = scipy.array([x[1] for x in timeseries]) series = np.array([x[1] for x in timeseries]) stdDev = scipy.std(series) # Issue #27 - Handle z_score agent.py RuntimeWarning - https://github.com/earthgecko/skyline/issues/27 # This change avoids spewing warnings on agent.py tests: # RuntimeWarning: invalid value encountered in double_scalars # If stdDev is 0 division returns nan which is not > grubbs_score so # return False here if stdDev == 0: return False mean = np.mean(series) tail_average = tail_avg(timeseries) z_score = (tail_average - mean) / stdDev len_series = len(series) threshold = scipy.stats.t.isf(.05 / (2 * len_series), len_series - 2) threshold_squared = threshold * threshold grubbs_score = ((len_series - 1) / np.sqrt(len_series)) * np.sqrt(threshold_squared / (len_series - 2 + threshold_squared)) return z_score > grubbs_score except: return None
[docs]def first_hour_average(timeseries): """ Calcuate the simple average over one hour, FULL_DURATION seconds ago. A timeseries is anomalous if the average of the last three datapoints are outside of three standard deviations of this value. """ # logger.info('Running ' + str(get_function_name())) try: last_hour_threshold = time() - (FULL_DURATION - 3600) series = pandas.Series([x[1] for x in timeseries if x[0] < last_hour_threshold]) mean = (series).mean() stdDev = (series).std() t = tail_avg(timeseries) return abs(t - mean) > 3 * stdDev except: return None
[docs]def stddev_from_average(timeseries): """ A timeseries is anomalous if the absolute value of the average of the latest three datapoint minus the moving average is greater than three standard deviations of the average. This does not exponentially weight the MA and so is better for detecting anomalies with respect to the entire series. """ # logger.info('Running ' + str(get_function_name())) try: series = pandas.Series([x[1] for x in timeseries]) mean = series.mean() stdDev = series.std() t = tail_avg(timeseries) return abs(t - mean) > 3 * stdDev except: return None
[docs]def stddev_from_moving_average(timeseries): """ A timeseries is anomalous if the absolute value of the average of the latest three datapoint minus the moving average is greater than three standard deviations of the moving average. This is better for finding anomalies with respect to the short term trends. """ # logger.info('Running ' + str(get_function_name())) try: series = pandas.Series([x[1] for x in timeseries]) if PANDAS_VERSION < '0.18.0': expAverage = pandas.stats.moments.ewma(series, com=50) stdDev = pandas.stats.moments.ewmstd(series, com=50) else: expAverage = pandas.Series.ewm(series, ignore_na=False, min_periods=0, adjust=True, com=50).mean() stdDev = pandas.Series.ewm(series, ignore_na=False, min_periods=0, adjust=True, com=50).std(bias=False) if PANDAS_VERSION < '0.17.0': return abs(series.iget(-1) - expAverage.iget(-1)) > 3 * stdDev.iget(-1) else: return abs(series.iat[-1] - expAverage.iat[-1]) > 3 * stdDev.iat[-1] # http://stackoverflow.com/questions/28757389/loc-vs-iloc-vs-ix-vs-at-vs-iat except: return None
[docs]def mean_subtraction_cumulation(timeseries): """ A timeseries is anomalous if the value of the next datapoint in the series is farther than three standard deviations out in cumulative terms after subtracting the mean from each data point. """ # logger.info('Running ' + str(get_function_name())) try: series = pandas.Series([x[1] if x[1] else 0 for x in timeseries]) series = series - series[0:len(series) - 1].mean() stdDev = series[0:len(series) - 1].std() if PANDAS_VERSION < '0.18.0': expAverage = pandas.stats.moments.ewma(series, com=15) else: expAverage = pandas.Series.ewm(series, ignore_na=False, min_periods=0, adjust=True, com=15).mean() if PANDAS_VERSION < '0.17.0': return abs(series.iget(-1)) > 3 * stdDev else: return abs(series.iat[-1]) > 3 * stdDev except: return None
[docs]def least_squares(timeseries): """ A timeseries is anomalous if the average of the last three datapoints on a projected least squares model is greater than three sigma. """ # logger.info('Running ' + str(get_function_name())) try: x = np.array([t[0] for t in timeseries]) y = np.array([t[1] for t in timeseries]) A = np.vstack([x, np.ones(len(x))]).T results = np.linalg.lstsq(A, y) residual = results[1] m, c = np.linalg.lstsq(A, y)[0] errors = [] # Evaluate append once, not every time in the loop - this gains ~0.020 s on # every timeseries potentially @earthgecko #1310 append_error = errors.append # Further a question exists related to performance and accruracy with # regards to how many datapoints are in the sample, currently all datapoints # are used but this may not be the ideal or most efficient computation or # fit for a timeseries... @earthgecko is checking graphite... for i, value in enumerate(y): projected = m * x[i] + c error = value - projected # errors.append(error) # @earthgecko #1310 append_error(error) if len(errors) < 3: return False std_dev = scipy.std(errors) t = (errors[-1] + errors[-2] + errors[-3]) / 3 return abs(t) > std_dev * 3 and round(std_dev) != 0 and round(t) != 0 except: return None
[docs]def histogram_bins(timeseries): """ A timeseries is anomalous if the average of the last three datapoints falls into a histogram bin with less than 20 other datapoints (you'll need to tweak that number depending on your data) Returns: the size of the bin which contains the tail_avg. Smaller bin size means more anomalous. """ try: # @modified 20210420 - Support #4026: Change from scipy array to numpy array # Deprecation of scipy.array # series = scipy.array([x[1] for x in timeseries]) series = np.array([x[1] for x in timeseries]) t = tail_avg(timeseries) h = np.histogram(series, bins=15) bins = h[1] for index, bin_size in enumerate(h[0]): if bin_size <= 20: # Is it in the first bin? if index == 0: if t <= bins[0]: return True # Is it in the current bin? elif t >= bins[index] and t < bins[index + 1]: return True return False except: return None
[docs]def ks_test(timeseries): """ A timeseries is anomalous if 2 sample Kolmogorov-Smirnov test indicates that data distribution for last 10 minutes is different from last hour. It produces false positives on non-stationary series so Augmented Dickey-Fuller test applied to check for stationarity. """ try: hour_ago = time() - 3600 ten_minutes_ago = time() - 600 # @modified 20210420 - Support #4026: Change from scipy array to numpy array # Deprecation of scipy.array # reference = scipy.array([x[1] for x in timeseries if x[0] >= hour_ago and x[0] < ten_minutes_ago]) # probe = scipy.array([x[1] for x in timeseries if x[0] >= ten_minutes_ago]) reference = np.array([x[1] for x in timeseries if x[0] >= hour_ago and x[0] < ten_minutes_ago]) probe = np.array([x[1] for x in timeseries if x[0] >= ten_minutes_ago]) if reference.size < 20 or probe.size < 20: return False ks_d, ks_p_value = scipy.stats.ks_2samp(reference, probe) if ks_p_value < 0.05 and ks_d > 0.5: adf = sm.tsa.stattools.adfuller(reference, 10) if adf[1] < 0.05: return True return False except: return None
[docs]def determine_median(timeseries): """ Determine the median of the values in the timeseries """ # logger.info('Running ' + str(get_function_name())) try: np_array = pandas.Series([x[1] for x in timeseries]) except: return False try: array_median = np.median(np_array) return array_median except: return False return False
[docs]def is_anomalously_anomalous(metric_name, ensemble, datapoint): """ This method runs a meta-analysis on the metric to determine whether the metric has a past history of triggering. TODO: weight intervals based on datapoint """ # We want the datapoint to avoid triggering twice on the same data new_trigger = [time(), datapoint] # Get the old history raw_trigger_history = redis_conn.get('trigger_history.' + metric_name) if not raw_trigger_history: redis_conn.set('trigger_history.' + metric_name, packb([(time(), datapoint)])) return True trigger_history = unpackb(raw_trigger_history) # Are we (probably) triggering on the same data? if (new_trigger[1] == trigger_history[-1][1] and new_trigger[0] - trigger_history[-1][0] <= 300): return False # Update the history trigger_history.append(new_trigger) redis_conn.set('trigger_history.' + metric_name, packb(trigger_history)) # Should we surface the anomaly? trigger_times = [x[0] for x in trigger_history] intervals = [ trigger_times[i + 1] - trigger_times[i] for i, v in enumerate(trigger_times) if (i + 1) < len(trigger_times) ] series = pandas.Series(intervals) mean = series.mean() stdDev = series.std() return abs(intervals[-1] - mean) > 3 * stdDev
[docs]def run_selected_algorithm(timeseries, metric_name): """ Filter timeseries and run selected algorithm. """ # Get rid of short series if len(timeseries) < MIN_TOLERABLE_LENGTH: raise TooShort() # Get rid of stale series if time() - timeseries[-1][0] > STALE_PERIOD: raise Stale() # Get rid of boring series if len(set(item[1] for item in timeseries[-MAX_TOLERABLE_BOREDOM:])) == BOREDOM_SET_SIZE: raise Boring() final_ensemble = [] number_of_algorithms_triggered = 0 number_of_algorithms_run = 0 number_of_algorithms = len(ALGORITHMS) maximum_false_count = number_of_algorithms - CONSENSUS + 1 # logger.info('the maximum_false_count is %s, above which CONSENSUS cannot be achieved' % (str(maximum_false_count))) consensus_possible = True if skyline_app == 'analyzer_dev': time_all_algorithms = True else: time_all_algorithms = False algorithm_tmp_file_prefix = '%s/%s.' % (SKYLINE_TMP_DIR, skyline_app) for algorithm in ALGORITHMS: if consensus_possible: if send_algorithm_run_metrics: algorithm_count_file = '%s%s.count' % (algorithm_tmp_file_prefix, algorithm) algorithm_timings_file = '%s%s.timings' % (algorithm_tmp_file_prefix, algorithm) run_algorithm = [] run_algorithm.append(algorithm) number_of_algorithms_run += 1 if send_algorithm_run_metrics: start = timer() try: ensemble = [globals()[test_algorithm](timeseries) for test_algorithm in run_algorithm] except: # logger.error('%s failed' % (algorithm)) ensemble = [None] if send_algorithm_run_metrics: end = timer() with open(algorithm_count_file, 'a') as f: f.write('1\n') with open(algorithm_timings_file, 'a') as f: f.write('%.6f\n' % (end - start)) else: ensemble = [None] # logger.info('CONSENSUS NOT ACHIEVABLE - skipping %s' % (str(algorithm))) if ensemble.count([True]) == 1: result = True number_of_algorithms_triggered += 1 # logger.info('algorithm %s triggerred' % (str(algorithm))) elif ensemble.count([False]) == 1: result = False elif ensemble.count([None]) == 1: ensemble = None else: result = False final_ensemble.append(result) false_count = final_ensemble.count(False) # logger.info('current false_count %s' % (str(false_count))) if not time_all_algorithms: if final_ensemble.count(False) >= maximum_false_count: consensus_possible = False # logger.info('CONSENSUS cannot be reached as %s algorithms have already not been triggered' % (str(false_count))) skip_algorithms_count = number_of_algorithms - number_of_algorithms_run # logger.info('skipping %s algorithms' % (str(skip_algorithms_count))) # logger.info('final_ensemble: %s' % (str(final_ensemble))) if not consensus_possible: return False, final_ensemble, timeseries[-1][1] try: # ensemble = [globals()[algorithm](timeseries) for algorithm in ALGORITHMS] ensemble = final_ensemble threshold = len(ensemble) - CONSENSUS if ensemble.count(False) <= threshold: if ENABLE_SECOND_ORDER: if is_anomalously_anomalous(metric_name, ensemble, timeseries[-1][1]): return True, ensemble, timeseries[-1][1] else: return True, ensemble, timeseries[-1][1] return False, ensemble, timeseries[-1][1] except: logger.error("Algorithm error: " + traceback.format_exc()) return False, [], 1